CGF的介绍和展望

作者:辉寿商学院 / 公众号:huishouyiliao 发布时间:2018-11-07

〈CGF的介绍和展望
搜集整理 仅供参考

CGF的介绍和展望:CGF全称为Concentrate Growth Factors,中文翻译为“浓缩生长因子”,于2006年在临床应用,是利用辉寿专业离心机和提取管,依靠物理性加速度和减速度充分激活血小板中的α颗粒,产生富含更高浓度生长因子和CD34+细胞的自体血液浓缩制品,表现出更佳的组织再生能力。
一,CGF的发展历史:1984年在提取的PRP中,发现当PRP与氯化钙以及凝血酶混合后,各种生长因子从血小板α颗粒中释放出来。但是凝血酶的使用经常出现凝血因子Ⅺ.Ⅴ抗体的形成。第二代的浓缩血小板就是,PRF也就是富血小板纤维蛋白。他在离心过程中血小板被激活同时大量脱颗粒细胞中蕴含的重要的生长因子释放出来。CGF在提取的过程中因为技术方法和设备的不同,其中纤维蛋白凝块比PRF中大得多而且更粘稠,纤维蛋白含量更多。在使用时有更强的再生力,和更好的多样性。相比而言具有更高的张力,更多的生长因子。
二,CGF的制备方法
首先采集10ml患者的静脉血,注入专用无热源辉寿试管中,注满后勿摇动,立即放入辉寿离心中。设定制备CGF程序,离心结束后。可见试管中分为三层(最上层为血清,中间纤维蛋白层,底层为血小板及红细胞等)。可分成几个规格:无红细胞CGF/有红细胞CGF/双胞胎提取法CGF等。分血清版CGF/血浆版CGF等。
三,CGF的主要成分及生物学特性
CGF作用的发挥有赖于其高浓度的各类生长因子及纤维蛋白原所形成的纤维网状支架。制备CGF过程中离心使得血小板被激活,其中的血小板α颗粒释放出各种生长因子,他们能促进细胞增殖、基质合成和血管生成,而纤维网状支架又能支持生长因子所诱导生成的新生组织。其中的浓缩生长因子包括血小板衍生生长因子(PDGF)、转移生长因子-β(TGF-β)、类胰岛素生长因子(IGF)、血管内皮生长因子(VEGF)、表皮生长因子(EGF)以及成纤维细胞生长因子(FGF、骨形成蛋白(BMPs) 等。
他们各自作用分别为:血小板衍生生长因子—PDGF是一种相对分子量大约为30kD的糖蛋白,首先在血小板的α颗粒中发现.也可由巨噬细胞、上皮细胞等合成和分泌,是最早出现在伤口的生长因子,可促进结缔组织的修复和再生。PDGF在血小板中有3种同分异构体:PDGFαα.PDGFββ和PDGαβ,在人类主要以PDGFαβ杂二聚体存在。
在机体遭受损伤时。PDGF从脱颗粒的血小板中释放.激活其靶细胞(如巨噬细胞、成纤维细胞、骨髓干细胞等)的细胞膜受体,细胞浆内的信号蛋白获得高能磷酸键,信号蛋白活化后诱发一系列反应。包括促进伤口处细胞的有丝分裂,形成功能性毛细血管.巨噬细胞发挥吞噬作用并释放生长因子等。PDGF主要具有丝裂原作用,作为一种促有丝分裂因子,在损伤部位表达较高,促进细胞趋化、增殖,并且可增加胶原蛋白的合成能力。
转移生长因子-β(TGF-β) 有两种形式,即TGF-β1和TGF-β2,相对分子量大约为25 kD。在血小板、巨噬细胞等内合成。由血小板脱颗粒释放或活化巨噬细胞分泌,以旁分泌形式作用于成纤维细胞、骨髓干细胞和前体成骨细胞。这些细胞又可合成和分泌TGF-β,以旁分泌或自分泌形式发挥作用。
TGF的主要功能是促进前体成骨细胞趋化和有丝分裂。促使伤口处胶原基质中的成骨细胞聚集。此外,TGF可以抑制破骨细胞形成和骨吸收,使得骨形成大于骨吸收。类胰岛素生长因子(IGF)是具有多种生理功能的生长因子,它对多种细胞具有促进有丝分裂的作用,包括成骨细胞、平滑肌细胞、骨骼肌细胞、角质细胞等。作为促进细胞增殖的另一种表现,IGF可以抑制许多细胞在成熟之前的凋亡。此外,它还参与皮肤、骨骼和神经系统的发育和分化[8]。其作用机制是:IGF与细胞受体结合发生受体自身磷酸化,后激活酪氨酸蛋白酶。促使胰岛素受体底物磷酸化,从而调节细胞的生长、发育和代谢。
血管内皮生长因子(VEGF)其主要生理作用是:VEGF与受体结合后促进微血管周围内皮细胞的增殖、迁移,并改变其基因表达;增强血管通透性,促进血浆蛋白的渗出,形成富含纤维素并有利于新血管形成的细胞外基质。在骨折部位存在氧梯度,在低氧状态下,VEGF表达增高,促进成骨细胞的分化,提高碱性磷酸酶的表达,促进骨折愈合。
表皮生长因子(EGF)是一种由53个氨基酸组成的低分子量单链多肽,具有多种生物学活性。其中以刺激体内多种类型组织细胞分裂和增殖最为突出。此外,EGF能促进基质合成和沉积。促进纤维组织形成。
成纤维细胞生长因子(FGF)对骨再生和发育以及骨折的恢复起重要作用。他们的主要任务是诱导骨再生,而骨再生是骨组织形成过程中最重要的阶BMPs(bonemorphogeneticproteins):BMP是一种疏水性酸性多肽,与羟基磷灰石有较高的亲和力,在诸多因子中唯一能够单独诱导骨组织异位成骨。这种活性蛋白使未分化的间充质细胞化学趋化、聚集、定向分化为成骨细胞,合成胶原促进骨基质形成,形成钙化的骨组织。目前确定的已有20种BMPs,以BMP-2为中心,构成网络化自身调节骨髓基质干细胞的诱导成骨分化。除了以上提到的这些生长因子外,CGF中还具有特殊的网架结构。采用Medifuge分相器进行精准的分离处理,通过纤维蛋白原分子(FG)的聚合作用,获取的纤维蛋白块可组成三维聚合物网络,内部纤维交织,均以凝胶状态单相连接。在聚合过程中,纤维的直径不断增长,直至发生相互作用。纤维蛋白为富含弹性的有机纤维蛋白网格,纤维单体间的浓缩是三分子和多分子性的,这种纤薄,柔软,弹性及可渗透的网状结构使得骨细胞、红细胞、白细胞、血小板及抗体易于增殖。CGF纤维蛋白分子结构为三键式联结,呈立体网状结构,可有效的滞纳血小板及各种循环分子(如细胞因子)。
Q1
四,小结与展望
CGF可以促进血管有效增长,它使原有骨量的维持或重建成为可能,CGF可以加速移植的生物材料的融合与重整,几乎不会引起任何感染。纤维蛋白能单独引起血管新生,这一极其重要的特性可以通过纤维蛋白胶的三维结构来解释,此外还有困在其中的细胞因子的联合作用,纤维蛋白原和纤维蛋白降解产物促进了中性粒细胞的迁移,增大了其表面上的受体CD11和CD18的容量,使中性粒细胞可以粘附内皮细胞并游出,同时还可以使中性粒细胞粘附到纤维蛋白原上,这些要素还能形成噬菌作用和酶降解过程。纤维基质能对上皮细胞和成纤维细胞起作用,从而引导受伤部位所覆盖区域的愈合。所有这些因素使我们可以将CGF视作一个纤维蛋白凝结物,它能引起微脉管化,影响上皮细胞在其表面上的迁移。
CGF具有促进组织生长和愈合能力,有利于所有再生组织的恢复。由于CGF的特殊结构,使得其具有极强的可模制性,因此在一定程度上可以代替GBR(引导骨再生技术)中的隔膜,但其在组织中的吸收时间以及隔离软组织向骨缺损区内部生长的确切机制还尚不明确,因此这也将是未来的一个研究方向。另外CGF技术在即刻种植、颌骨囊肿的治疗、拔牙位点的保存、促进骨折愈合等领域也有着广泛的研究前景。

关注辉寿商学院微信公众号,获取更多图文精彩内容


其他栏目